4.6 Article

Coherent-state discrimination via nonheralded probabilistic amplification

Journal

PHYSICAL REVIEW A
Volume 93, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.93.062315

Keywords

-

Ask authors/readers for more resources

A scheme for the detection of low-intensity optical coherent signals was studied which uses a probabilistic amplifier operated in the nonheralded version as the underlying nonlinear operation to improve the detection efficiency. This approach allows us to improve the statistics by keeping track of all possible outcomes of the amplification stage (including failures). When compared with an optimized Kennedy receiver, the resulting discrimination success probability we obtain presents a gain up to similar to 1.85% and it approaches the Helstrom bound appreciably faster than the Dolinar receiver when employed in an adaptive strategy. We also notice that the advantages obtained can ultimately be associated with the fact that, in the high-gain limit, the nonheralded version of the probabilistic amplifier induces a partial dephasing which preserves quantum coherence among low-energy eigenvectors while removing it elsewhere. A proposal to realize such a transformation based on an optical cavity implementation is presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available