4.6 Article

Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging

Journal

PHYSICS IN MEDICINE AND BIOLOGY
Volume 61, Issue 13, Pages 5077-5088

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0031-9155/61/13/5077

Keywords

barium; growth; bone; K-edge subtraction; functional imaging; synchrotron; XRF

Funding

  1. Sylvia Fedoruk Canadian Center for Nuclear Innovation
  2. Canada Research Chairs program
  3. Canada Foundation for Innovation
  4. Natural Sciences and Engineering Research Council of Canada
  5. University of Saskatchewan
  6. Government of Saskatchewan
  7. Western Economic Diversification Canada
  8. National Research Council Canada
  9. Canadian Institutes of Health Research
  10. DOE Office of Biological and Environmental Research
  11. National Institutes of Health, National Center for Research Resources, Biomedical Technology Program [P41RR001209]

Ask authors/readers for more resources

Bone is a dynamic tissue which exhibits complex patterns of growth as well as continuous internal turnover (i.e. remodeling). Tracking such changes can be challenging and thus a high resolution imaging-based tracer would provide a powerful new perspective on bone tissue dynamics. This is, particularly so if such a tracer can be detected in 3D. Previously, strontium has been demonstrated to be an effective tracer which can be detected by synchrotron-based dual energy K-edge subtraction (KES) imaging in either 2D or 3D. The use of strontium is, however, limited to very small sample thicknesses due to its low K-edge energy (16.105 keV) and thus is not suitable for in vivo application. Here we establish proof-of-principle for the use of barium as an alternative tracer with a higher K-edge energy (37.441 keV), albeit for ex vivo imaging at the moment, which enables application in larger specimens and has the potential to be developed for in vivo imaging of preclinical animal models. New bone formation within growing rats in 2D and 3D was demonstrated at the Biomedical Imaging and Therapy bending magnet (BMIT-BM) beamline of the Canadian Light Source synchrotron. Comparative x-ray fluorescence imaging confirmed those patterns of uptake detected by KES. This initial work provides a platform for the further development of this tracer and its exploration of applications for in vivo development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available