4.8 Article

Tumor-Homing Cell-Penetrating Peptide Linked to Colloidal Mesoporous Silica Encapsulated (-)-Epigallocatechin-3-gallate as Drug Delivery System for Breast Cancer Therapy in Vivo

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 32, Pages 18145-18155

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b05618

Keywords

(-)-epigallocatechin-3-gallate; PEGA-pVEC peptide; targeted therapy; colloidal mesoporous silica; drug delivery system

Funding

  1. Natural Science Foundation of China [81372137, 81201799, 21335004]
  2. Discipline construction funds (Molecular Biology of Cancer Team) [STIF201108]
  3. Guangdong Medical College Science Founding [XQ1202]

Ask authors/readers for more resources

Chemotherapy is the use of chemical drugs to prevent cancer cell proliferation, invasion, and metastasis, but a serious obstacle is that chemotherapeutics strikes not only on cancerous cells, but also on normal cells. Thus, anticancer drugs without side effects should be developed and extracted. (-)-Epigallocatechin-3-gallate (EGCG), a major ingredient of green tea, possesses excellent medicinal values, such as anticancer effects, DNA-protective effects, etc. However, EGCG will be mostly metabolized if it is directly orally ingested. Here, we report a drug delivery system (DDS) for loading EGCG to enhance its stability, promising target and anticancer effects in vitro and in vivo. The designed DDS is composed of three main moieties: anticancer drug, EGCG; drug vector, colloidal mesoporous silica (CMS); target ligand, breast tumor-homing cell-penetrating peptide (PEGA-pVEC peptide). Based on the results of CCK-8 assay, confocal imaging, cell cycle analysis, and Western blot, the anticancer effect of EGCG was increased by loading of EGCG into CMS and CMS@peptide. In vivo treatment displayed that CMS had a not obvious influence on breast tumor bearing mice, but CMS@peptide@EGCG showed the greatest tumor inhibition rate, with about 89.66%. H&E staining of organs showed no tissue injury in all experimental groups. All the above results prove that EGCG is an excellent anticancer drug without side effects and CMS@peptide could greatly promote the efficacy of EGCG on breast tumors by targeted accumulation and release, which provide much evidence for the CMS@peptide as a promising and targeting vector for DDS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available