4.7 Article

Finite element simulation of magnetohydrodynamic convective nanofluid slip flow in porous media with nonlinear radiation

Journal

ALEXANDRIA ENGINEERING JOURNAL
Volume 55, Issue 2, Pages 1305-1319

Publisher

ELSEVIER
DOI: 10.1016/j.aej.2016.04.021

Keywords

Darcy porous medium; Finite element; MHD slip flow; Nonlinear radiation; Zero mass flux

Ask authors/readers for more resources

A numerical investigation of two dimensional steady state laminar boundary layer flow of a viscous electrically-conducting nanofluid in the vicinity of a stretching/shrinking porous flat plate located in a Darcian porous medium is performed. The nonlinear Rosseland radiation effect is taken into account. Velocity slip and thermal slip at the boundary as well as the newly developed zero mass flux boundary conditions are also implemented to achieve physically applicable results. The governing transport equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity transformations and these are then solved numerically using a variational finite element method (FEM). The influence of the governing parameters (Darcy number, magnetic field, velocity and thermal slip, temperature ratio, transpiration, Brownian motion, thermophoresis, Lewis number and Reynolds number) on the dimensionless velocity, temperature, nanoparticle volume fraction as well as the skin friction, the heat transfer rates and the mass transfer rates are examined and illustrated in detail. The FEM code is validated with earlier studies for non-magnetic non-slip flow demonstrating close correlation. The present study is relevant to high-temperature nano-materials processing operations. (C) 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available