4.4 Article

Floquet-Based Analysis of General Responses of the Mathieu Equation

Publisher

ASME
DOI: 10.1115/1.4033341

Keywords

Mathieu equation; Floquet theory; harmonic balance

Funding

  1. National Science Foundation [CMMI-1335177]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [1335177] Funding Source: National Science Foundation

Ask authors/readers for more resources

Solutions to the linear unforced Mathieu equation, and their stabilities, are investigated. Floquet theory shows that the solution can be written as a product between an exponential part and a periodic part at the same frequency or half the frequency of excitation. In the current work, an approach combining Floquet theory with the harmonic balance method is investigated. A Floquet solution having an exponential part with an unknown exponential argument and a periodic part consisting of a series of harmonics is assumed. Then, performing harmonic balance, frequencies of the response are found and stability of the solution is examined over a parameter set. The truncated solution is consistent with an existing infinite series solution for the undamped case. The truncated solution is then applied to the damped Mathieu equation and parametric excitation with two harmonics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available