4.6 Article

Transfer hydrogenation of biomass-derived levulinic acid to γ-valerolactone over supported Ni catalysts

Journal

RSC ADVANCES
Volume 6, Issue 64, Pages 59753-59761

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra08637c

Keywords

-

Funding

  1. Council of Scientific and Industrial Research (CSIR) New Delhi

Ask authors/readers for more resources

A sustainable process of catalytic transfer hydrogenation (CTH) of levulinic acid (LA) to gamma-valerolactone (GVL) was investigated over Ni on various supports (Al2O3, ZnO, MMT and SiO2) in the presence of isopropanol (IPA) as the H-donor. Among these, the montmorillonite (MMT) supported Ni catalyst showed almost complete LA conversion (>99%) and selectivity (>99%) to GVL within 1 h. XRD and XPS results showed that the concentration of the metallic species significantly enhanced (two to four times) in the recovered sample as compared to the freshly prepared Ni/MMT. This was due to the in situ reduction of Ni2+ species present on the catalyst surface, through liberated H-2 under the reaction conditions. The strong acid strength of MMT, evidenced by NH3-TPD and py-IR, facilitated the esterification of LA as well as cyclization to GVL. The conversion-selectivity pattern was found to decrease in the IPA-water mixture while, it remained unchanged in the IPA-acetone mixture. Our catalyst could be efficiently recycled up to five times with consistent CTH activity and selectivity to GVL. The plausible mechanism of LA to GVL conversion involves the formation of a levulinate ester with IPA that favours its simultaneous hydrogenation and cyclization in a spontaneous manner to give GVL and regenerating IPA for sustainability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available