4.7 Article

One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 16, Issue 16, Pages 10333-10350

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-16-10333-2016

Keywords

-

Funding

  1. Natural Science Foundation of Jiangsu Province [BK20150904, BK20151041]
  2. Jiangsu Distinguished Professor Project [2191071503201]
  3. Jiangsu Six Major Talent Peak Project [2191071502101]
  4. Startup Fund for Talent at NUIST [2243141501008]
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  6. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control of Nanjing University of Information Science and Technology
  7. Jiangsu Province Innovation Platform for Superiority Subject of Environmental Science and Engineering [KHK1201]

Ask authors/readers for more resources

China has been experiencing severe air pollution in recent decades. Although an ambient air quality monitoring network for criteria pollutants has been constructed in over 100 cities since 2013 in China, the temporal and spatial characteristics of some important pollutants, such as particulate matter (PM) components, remain unknown, limiting further studies investigating potential air pollution control strategies to improve air quality and associating human health outcomes with air pollution exposure. In this study, a yearlong (2013) air quality simulation using the Weather Research and Forecasting (WRF) model and the Community Multi-scale Air Quality (CMAQ) model was conducted to provide detailed temporal and spatial information of ozone (O-3), total PM2.5, and chemical components. Multi-resolution Emission Inventory for China (MEIC) was used for anthropogenic emissions and observation data obtained from the national air quality monitoring network were collected to validate model performance. The model successfully reproduces the O-3 and PM2.5 concentrations at most cities for most months, with model performance statistics meeting the performance criteria. However, overprediction of O-3 generally occurs at low concentration range while underprediction of PM2.5 happens at low concentration range in summer. Spatially, the model has better performance in southern China than in northern China, central China, and Sichuan Basin. Strong seasonal variations of PM2.5 exist and wind speed and direction play important roles in high PM2.5 events. Secondary components have more boarder distribution than primary components. Sulfate (SO42-), nitrate (NO3-), ammonium (NH4+ ) , and primary organic aerosol (POA) are the most important PM2.5 components. All components have the highest concentrations in winter except secondary organic aerosol (SOA). This study proves the ability of the CMAQ model to reproduce severe air pollution in China, identifies the directions where improvements are needed, and provides information for human exposure to multiple pollutants for assessing health effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available