4.7 Article

Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China

Journal

AGRICULTURE ECOSYSTEMS & ENVIRONMENT
Volume 252, Issue -, Pages 74-82

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.agee.2017.10.004

Keywords

Soil acidification; Tea plantation; N fertilization; Ultisol; Soil solution

Funding

  1. National Key Research and Development Plan [2016YFD0200900]
  2. Earmarked Fund for China Agriculture Research System [CARS 23]
  3. Chinese Academy of Agricultural Sciences (CAAS-ASTIP-TRICAAS)
  4. Research Foundation for Natural Sciences of Zhejiang Province [LY13C150002]

Ask authors/readers for more resources

In tea (Camellia sinensis) plantation areas, soil acidification mainly results from excessive nitrogen fertilization. However, the proposed theoretical explanations for soil acidification due to nitrogen fertilization are still lacking empirical validation because most studies have used short-term incubation periods or pot experiments. Here, both soil and soil solution samples were taken from a tea plantation field (Ultisol in USDA taxonomy system, or Alisol in WRB taxonomy system) treated using different nitrogen application rates: 0 (N0), 119 (N119), 285 (N285), and 569 (N569) kg N ha(-1) yr(-1) for 8 years (2006-2013). Soil pH and the concentrations of the relevant cations and anions were also determined. With no nitrogen fertilization (N0), the surface soil pH decreased from 4.16 to 3.32 after 8 years in the tea plantation. Compared with no nitrogen fertilization (N0), high nitrogen fertilization (N569) significantly decreased the soil pH from 3.32 to 3.15 and 3.67 to 3.35 in the soil at depths of 0-40 cm and 40-90 cm, respectively. However, the low (N119) and moderate (N285) nitrogen treatments showed non-significant effects upon soil pH. Our results confirm the previous findings that a high nitrogen application rate can accelerate soil acidification in a tea plantation, and that the subsoil is particularly susceptible to acidification after heavy nitrogen fertilization. Soil acidification also significantly decreased the nutrient base cations Ca2+, Mg2+, and K+ in the soil. Our results suggest that heavy synthetic nitrogen fertilization should be partly replaced with compound or organic fertilizers to mitigate soil acidification and nutrient cation deficiency in tea plantation fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available