4.7 Article

Characterization of perovskite solar cells: Towards a reliable measurement protocol

Journal

APL MATERIALS
Volume 4, Issue 9, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4960759

Keywords

-

Funding

  1. German Federal Ministry of Education and Research (BMBF, project MesoPIN)
  2. Baden-Wurttemberg Foundation
  3. Carl Zeiss Foundation

Ask authors/readers for more resources

Lead halide perovskite solar cells have shown a tremendous rise in power conversion efficiency with reported record efficiencies of over 20% making this material very promising as a low cost alternative to conventional inorganic solar cells. However, due to a differently severe hysteretic behaviour during current density-voltage measurements, which strongly depends on scan rate, device and measurement history, preparation method, device architecture, etc., commonly used solar cell measurements do not give reliable or even reproducible results. For the aspect of commercialization and the possibility to compare results of different devices among different laboratories, it is necessary to establish a measurement protocol which gives reproducible results. Therefore, we compare device characteristics derived from standard current density-voltage measurements with stabilized values obtained from an adaptive tracking of the maximum power point and the open circuit voltage as well as characteristics extracted from time resolved current density-voltage measurements. Our results provide insight into the challenges of a correct determination of device performance and propose a measurement protocol for a reliable characterisation which is easy to implement and has been tested on varying perovskite solar cells fabricated in different laboratories. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available