4.8 Article

Suppressing Surface Lattice Oxygen Release of Li-Rich Cathode Materials via Heterostructured Spinel Li4Mn5O12 Coating

Journal

ADVANCED MATERIALS
Volume 30, Issue 29, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201801751

Keywords

cathode materials; electrochemistry; heterostructure; lattice oxygen release; lithium-ion batteries

Funding

  1. Basic Science Center Project of the Natural Science Foundation of China [51788104]
  2. National Key R&D Program of China [2016YFA0202500]
  3. National Natural Science Foundation of China [21773264, 51772301]
  4. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA09010100]

Ask authors/readers for more resources

Lithium-rich layered oxides with the capability to realize extraordinary capacity through anodic redox as well as classical cationic redox have spurred extensive attention. However, the oxygen-involving process inevitably leads to instability of the oxygen framework and ultimately lattice oxygen release from the surface, which incurs capacity decline, voltage fading, and poor kinetics. Herein, it is identified that this predicament can be diminished by constructing a spinel Li4Mn5O12 coating, which is inherently stable in the lattice framework to prevent oxygen release of the lithium-rich layered oxides at the deep delithiated state. The controlled KMnO4 oxidation strategy ensures uniform and integrated encapsulation of Li4Mn5O12 with structural compatibility to the layered core. With this layer suppressing oxygen release, the related phase transformation and catalytic side reaction that preferentially start from the surface are consequently hindered, as evidenced by detailed structural evolution during Li+ extraction/insertion. The heterostructure cathode exhibits highly competitive energy-storage properties including capacity retention of 83.1% after 300 cycles at 0.2 C, good voltage stability, and favorable kinetics. These results highlight the essentiality of oxygen framework stability and effectiveness of this spinel Li4Mn5O12 coating strategy in stabilizing the surface of lithium-rich layered oxides against lattice oxygen escaping for designing high-performance cathode materials for high-energy-density lithium-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available