4.7 Article

Modelling evapotranspiration during precipitation deficits: identifying critical processes in a land surface model

Journal

HYDROLOGY AND EARTH SYSTEM SCIENCES
Volume 20, Issue 6, Pages 2403-2419

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-20-2403-2016

Keywords

-

Funding

  1. Australian Research Council Centre of Excellence for Climate System Science [CE110001028]
  2. Australian Research Council Linkage grant [LP140100232]
  3. US Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program [DE-FG02-04ER63917, DE-FG02-04ER63911]
  4. CFCAS
  5. NSERC
  6. BIOCAP
  7. Environment Canada
  8. NRCan
  9. CarboEuropeIP
  10. FAO-GTOS-TCO
  11. iLEAPS
  12. Max Planck Institute for Biogeochemistry
  13. National Science Foundation
  14. University of Tuscia
  15. Universite Laval and Environment Canada
  16. US Department of Energy

Ask authors/readers for more resources

Surface fluxes from land surface models (LSMs) have traditionally been evaluated against monthly, seasonal or annual mean states. The limited ability of LSMs to reproduce observed evaporative fluxes under water-stressed conditions has been previously noted, but very few studies have systematically evaluated these models during rainfall deficits. We evaluated latent heat fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLE) LSM across 20 flux tower sites at sub-annual to inter-annual timescales, in particular focusing on model performance during seasonal-scale rainfall deficits. The importance of key model processes in capturing the latent heat flux was explored by employing alternative representations of hydrology, leaf area index, soil properties and stomatal conductance. We found that the representation of hydrological processes was critical for capturing observed declines in latent heat during rainfall deficits. By contrast, the effects of soil properties, LAI and stomatal conductance were highly site-specific. Whilst the standard model performs reasonably well at annual scales as measured by common metrics, it grossly underestimates latent heat during rainfall deficits. A new version of CABLE, with a more physically consistent representation of hydrology, captures the variation in the latent heat flux during seasonal-scale rainfall deficits better than earlier versions, but remaining biases point to future research needs. Our results highlight the importance of evaluating LSMs under water-stressed conditions and across multiple plant functional types and climate regimes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available