4.8 Article

Atomic Cobalt Covalently Engineered Interlayers for Superior Lithium-Ion Storage

Journal

ADVANCED MATERIALS
Volume 30, Issue 32, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201802525

Keywords

atomic cobalt covalence; interlayer spacing engineer; layered materials; Li-ion storage; XANES

Funding

  1. MOST [2014CB848900, 2017YFA0303500]
  2. NSFC [U1532112, 11574280, 11605201]
  3. Anhui Provincial Natural Science Foundation [1708085QB27]
  4. CAS Key Research Program of Frontier Sciences [QYZDB-SSW-SLH018]
  5. CAS Interdisciplinary Innovation Team
  6. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University (111 project) [B12015]

Ask authors/readers for more resources

With the unique-layered structure, MXenes show potential as electrodes in energy-storage devices including lithium-ion (Li+) capacitors and batteries. However, the low Li+-storage capacity hinders the application of MXenes in place of commercial carbon materials. Here, the vanadium carbide (V2C) MXene with engineered interlayer spacing for desirable storage capacity is demonstrated. The interlayer distance of pristine V2C MXene is controllably tuned to 0.735 nm resulting in improved Li-ion capacity of 686.7 mA h g(-1) at 0.1 A g(-1), the best MXene-based Li+-storage capacity reported so far. Further, cobalt ions are stably intercalated into the interlayer of V2C MXene to form a new interlayer-expanded structure via strong V-O-Co bonding. The intercalated V2C MXene electrodes not only exhibit superior capacity up to 1117.3 mA h g(-1) at 0.1 A g(-1), but also deliver a significantly ultralong cycling stability over 15 000 cycles. These results clearly suggest that MXene materials with an engineered interlayer distance will be a rational route for realizing them as superstable and high-performance Li+ capacitor electrodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available