4.8 Article

Orientation-Dependent Strain Relaxation and Chemical Functionalization of Graphene on a Cu(111) Foil

Journal

ADVANCED MATERIALS
Volume 30, Issue 10, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201706504

Keywords

chemical functionalization; Cu(111); wrinkle-free graphene

Funding

  1. [IBS-R019-D1]

Ask authors/readers for more resources

Epitaxial graphene grown on single crystal Cu(111) foils by chemical vapor deposition is found to be free of wrinkles and under biaxial compressive strain. The compressive strain in the epitaxial regions (0.25-0.40%) is higher than regions where the graphene is not epitaxial with the underlying surface (0.20-0.25%). This orientation-dependent strain relaxation is through the loss of local adhesion and the generation of graphene wrinkles. Density functional theory calculations suggest a large frictional force between the epitaxial graphene and the Cu(111) substrate, and this is therefore an energy barrier to the formation of wrinkles in the graphene. Enhanced chemical reactivity is found in epitaxial graphene on Cu(111) foils as compared to graphene on polycrystalline Cu foils for certain chemical reactions. A higher compressive strain possibly favors lowering the formation energy and/or the energy gap between the initial and transition states, either of which can lead to an increase in chemical reactivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available