4.8 Article

Dissipative Self-Assembly Driven by the Consumption of Chemical Fuels

Journal

ADVANCED MATERIALS
Volume 30, Issue 41, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201706750

Keywords

chemical fuels; energy dissipation; self-assembly; transient nanostructures

Funding

  1. European Research Council [336080]
  2. European Research Council (ERC) [336080] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Dissipative self-assembly leads to structures and materials that exist away from equilibrium by continuously exchanging energy and materials with the external environment. Although this mode of self-assembly is ubiquitous in nature, where it gives rise to functions such as signal processing, motility, self-healing, self-replication, and ultimately life, examples of dissipative self-assembly processes in man-made systems are few and far between. Herein, recent progress in developing diverse synthetic dissipative self-assembly systems is discussed. The systems reported thus far can be categorized into three classes, in which: i) the fuel chemically modifies the building blocks, thus triggering their self-assembly, ii) the fuel acts as a template interacting with the building blocks noncovalently, and iii) transient states are induced by the addition of two mutually exclusive stimuli. These early studies give rise to materials that would be difficult to obtain otherwise, including hydrogels with programmable lifetimes, vesicular nanoreactors, and membranes exhibiting transient conductivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available