4.8 Article

Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation

Journal

ADVANCED MATERIALS
Volume 30, Issue 13, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201705791

Keywords

2D-materials exfoliation; atomistic simulations; graphene; superlubricity

Funding

  1. Engineering and Physical Sciences Research Council (EPSRC)
  2. EU [671564]
  3. UK Consortium on Mesoscale Engineering Sciences (UKCOMES) under the UK EPSRC Grant [EP/L00030X/1]
  4. LRZ
  5. Cyfronet
  6. Engineering and Physical Sciences Research Council [EP/L00030X/1, 1631545] Funding Source: researchfish
  7. EPSRC [EP/L00030X/1] Funding Source: UKRI

Ask authors/readers for more resources

Graphite's lubricating properties due to the weak interactions between individual layers have long been known. However, these interactions are not weak enough to allow graphite to readily exfoliate into graphene on a large scale. Separating graphite layers down to a single sheet is an intense area of research as scientists attempt to utilize graphene's superlative properties. The exfoliation and processing of layered materials is governed by the friction between layers. Friction on the macroscale can be intuitively understood, but there is little understanding of the mechanisms involved in nanolayered materials. Using molecular dynamics and a new forcefield, graphene's unusual behavior in a superlubric state is examined, and the energy dissipated between two such surfaces sliding past each other is shown. The dependence of friction on temperature and surface roughness is described, and agreement with experiment is reported. The accuracy of the simulated behavior enables the processes that drive exfoliation of graphite into individual graphene sheets to be described. Taking into account the friction between layers, a peeling mechanism of exfoliation is predicted to be of lower energy cost than shearing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available