4.8 Article

Influence of Solvent Additive 1,8-Octanedithiol on P3HT:PCBM Solar Cells

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 20, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201800209

Keywords

crystallinity; morphology; organic photovoltaics; solvent additives; TOF-GISANS

Funding

  1. TUM.solar in the frame of the Bavarian Collaborative Research Project Solar Technologies go Hybrid (SolTech)
  2. GreenTech Initiative (Interface Science for Photovoltaics - ISPV) of the EuroTech Universities
  3. Nanosystems Initiative Munich (NIM)
  4. Bavarian State Ministry of Education, Science, and the Arts via the project Energy Valley Bavaria

Ask authors/readers for more resources

Processing solvent additives in polymer: fullerene bulk heterojunction systems are known as a promising method to enhance photovoltaic performance. It is generally agreed that solvent additives enable polymers to have a high degree of molecular order which increases the device performance. However, the understanding of the efficiency enhancement is not complete. There is a lack of insight regarding the quantitative determination of the molecular miscibility between polymer and fullerene as well as the inner morphology changes induced by the additives. In this work, understanding of the influence of the solvent additive 1,8-octanedithiol (ODT) is provided on the classic system poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61 butyric acid methyl ester (P3HT:PCBM) films. The impact on polymer crystallinity, surface structure, inner morphology, and quantitative molecular miscibility of P3HT and PCBM is studied as a function of ODT volume concentration. The crystallinity is probed with absorption spectroscopy and grazing incidence wide-angle X-ray scattering. The morphology and miscibility are characterized via atomic force microscopy and time-of-flight grazing incidence small angle neutron scattering. Besides an increased crystallinity and prominent phase separation, ODT increases the solubility of PCBM in P3HT and reduces the size of amorphous P3HT domains. Moreover, solvent processing with a high ODT concentration alters the vertical material composition of the active layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available