4.8 Article

Tailoring the Surface Chemical Reactivity of Transition-Metal Dichalcogenide PtTe2 Crystals

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 15, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201706504

Keywords

density functional theory; surface science; transition-metal dichalcogenides; vibrational spectroscopy; X-ray photoelectron spectroscopy

Funding

  1. Nanoscience Foundry and Fine Analysis (NFFA-MIUR Italy Progetti Internazionali) project [2017004]
  2. European Union [696656-GrapheneCore1]

Ask authors/readers for more resources

PtTe2 is a novel transition-metal dichalcogenide hosting type-II Dirac fermions that displays application capabilities in optoelectronics and hydrogen evolution reaction. Here it is shown, by combining surface science experiments and density functional theory, that the pristine surface of PtTe2 is chemically inert toward the most common ambient gases (oxygen and water) and even in air. It is demonstrated that the creation of Te vacancies leads to the appearance of tellurium-oxide phases upon exposing defected PtTe2 surfaces to oxygen or ambient atmosphere, which is detrimental for the ambient stability of uncapped PtTe2-based devices. On the contrary, in PtTe2 surfaces modified by the joint presence of Te vacancies and substitutional carbon atoms, the stable adsorption of hydroxyl groups is observed, an essential step for water splitting and the water-gas shift reaction. These results thus pave the way toward the exploitation of this class of Dirac materials in catalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available