4.8 Article

Engineering of Mesoporous Silica Coated Carbon-Based Materials Optimized for an Ultrahigh Doxorubicin Payload and a Drug Release Activated by pH, T, and NIR-light

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 17, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201706996

Keywords

carbon nanotubes; drug loading/release; graphene; mesoporous silica; nanocomposites; stimuli responsive materials

Funding

  1. University of Strasbourg through the Initiatives d'excellence-Attractivite framework
  2. IDEX from Strasbourg l'Excellence par dela les Frontieres

Ask authors/readers for more resources

Among the challenges in nanomedicine, engineering nanomaterials able to combine imaging and multitherapies is hugely needed to address issues of a personalized treatment. In that context, a novel class of drug releasing and remotely activated nanocomposites based on carbon-based materials coated with mesoporous silica (MS) and loaded with an outstanding level of the antitumoral drug doxorubicin (DOX) is designed. First, carbon nanotubes (CNTs) and graphene sheets (called few-layer graphene FLG) are processed to afford a distribution size that is more suitable for nanomedicine applications. Then, the controlled coating of MS shells having a thickness tailored with the sol-gel parameters (amount of precursor, sol-gel time) around the sliced CNTs and exfoliated FLGs is reported. Furthermore, the drug loading in such mesoporous nanocomposites is investigated and the surface modification with an aminopropyltriethoxysilane (APTS) coating leading to a controlled polysiloxane layer provides an ultrahigh payload of DOX (up to several folds the mass of the initial composites). Such new CNT-based nanocomposites are demonstrated to release DOX at low acidic pH, high temperature (T), and remotely when they are excited by near infrared (NIR) light. Such nanoconstructs may find applications as components of innovative biomedical scaffolds for phototherapy combined with drug delivery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available