4.8 Article

A Universal Strategy to Utilize Polymeric Semiconductors for Perovskite Solar Cells with Enhanced Efficiency and Longevity

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 15, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201706377

Keywords

conjugated polymers; fluorination; perovskite solar cells; stability

Funding

  1. National Key Research Projects [2016YFA0202402]
  2. Natural Science Foundation of Jiangsu Province of China [BK20170337]
  3. National Natural Science Foundation of China [51761145013, 61674111]
  4. 111 projects

Ask authors/readers for more resources

In this contribution, a facile and universal method is successfully reported to fabricate perovskite solar cells (PSCs) with enhanced efficiency and stability. Through dissolving functional conjugated polymers in antisolvent chlorobenzene to treat the spinning CH3NH3PbI3 perovskite film, the resultant devices exhibit significantly enhanced efficiency and longevity simultaneously. In-depth characterizations demonstrate that thin polymer layer well covers the top surface of perovskite film, resulting in certain surface passivation and morphology modification. More importantly, it is shown that through rational chemical modification, namely molecular fluorination, the air stability and photostability of the perovskite solar cells are remarkably enhanced. Considering the vast selection of conjugated polymer materials and easy functional design, promising new results are expected in further enhancement of device performance. It is believed that the findings provide exciting insights into the role of conjugated polymer in improving the current perovskite-based solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available