4.8 Article

Humidity-Induced Degradation via Grain Boundaries of HC(NH2)2PbI3 Planar Perovskite Solar Cells

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 11, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201705363

Keywords

degradation; formamidinium; humidity; moisture stability; perovskite; solar cells

Funding

  1. Australian Government through the Australian Renewable Energy Agency (ARENA)

Ask authors/readers for more resources

The sensitivity of organic-inorganic perovskites to environmental factors remains a major barrier for these materials to become commercially viable for photovoltaic applications. In this work, the degradation of formamidinium lead iodide (FAPbI(3)) perovskite in a moist environment is systematically investigated. It is shown that the level of relative humidity (RH) is important for the onset of degradation processes. Below 30% RH, the black phase of the FAPbI(3) perovskite shows excellent phase stability over 90 d. Once the RH reaches 50%, degradation of the FAPbI(3) perovskite occurs rapidly. Results from a Kelvin probe force microscopy study reveal that the formation of nonperovskite phases initiates at the grain boundaries and the phase transition proceeds toward the grain interiors. Also, ion migration along the grain boundaries is greatly enhanced upon degradation. A post-thermal treatment (PTT) that removes chemical residues at the grain boundaries which effectively slows the degradation process is developed. Finally, it is demonstrated that the PTT process improves the performance and stability of the final device.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available