4.8 Article

Flexible Normal-Tangential Force Sensor with Opposite Resistance Responding for Highly Sensitive Artificial Skin

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 18, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201707503

Keywords

CNT-bridged GO sheets; normal-tangential dual functionality; opposite resistance changes; wearable electronic skins

Funding

  1. National Natural Science Foundation of China [51402042]
  2. Sichuan Provincial Science and Technology Department [2016GZ0248]
  3. UESTC [A03013023001041]

Ask authors/readers for more resources

An electronic skin (e-skin) that can detect both normal and tangential forces with a differentiable signals output is essential for wearable electronics. A flexible, stretchable, and highly sensitive tactile sensor is presented that enables the detection of both normal and tangential forces, with specific opposite and thus easily being differentiated resistance changing outputs. The e-skin, which is based on two-sublayered carbon nanotubes (CNTs)/graphene oxide (GO) hybrid 3D conductive networks, that are anchored on a thin porous polydimethylsiloxane (PDMS) layer, is synthesized via a porogen (GO wrapped NaCl) assisted self-assembling process. The fabricated CNTs/GO@PDMS-based e-skin shows superior sensitivity (gauge factor of 2.26 under a pressure loading of 1 kPa) to tangential force, moderate sensitivity (-0.31 kPa(-1) at 0.05-3.8 kPa, and -0.03 kPa(-1) at 3.8-6.3 kPa, respectively) to normal force, and a high-reproducible response over 5000 loading cycles including stretching, bending, and shearing. For applications, the e-skin can not only detect wrist pulsing, discriminating different roughness of surfaces, but also produce an obvious responding to an extremely slight ticking (<20 mg) from a feather, and even can real-timely monitor human's breath and music in rhythm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available