4.8 Article

Thermally Activated Delayed Fluorescence Conjugated Polymers with Backbone-Donor/Pendant-Acceptor Architecture for Nondoped OLEDs with High External Quantum Efficiency and Low Roll-Off

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 10, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201706916

Keywords

acceptor; benzophenone; conjugated polymer; electroluminescence; thermally activated delayed fluorescence

Funding

  1. National Natural Science Foundation of China [51473159, 21674110, 21404101]
  2. National Key R&D Program of China [2016YFB0401001]

Ask authors/readers for more resources

Most thermally activated delayed fluorescence (TADF) emitters have to be doped in the host for fabricating efficient organic light-emitting diodes (OLEDs) and always suffer from quick efficiency roll-off at high brightness, which severely affect their commercial application in display and lighting fields. In the work, a series of the polymers are synthesized by copolymerization of two carbazole monomers and one acridine derivative monomer containing benzophenone acceptor group. The obtained polymers therefore possess a conjugated backbone with carbazole/acridine moieties and benzophenone pendant to form the twisted donor/acceptor structure. Consequently, the TADF features inherited from the acridine derivative are maintained and improved by managing the content of acridine derivative monomer in the polymers. Solution-processed OLEDs obtained from using neat polymer films exhibit comparable performance with organic TADF small molecules, achieving a maximum external quantum efficiency (EQE) of 18.1% and a very slow roll-off with EQE of 17.8% at the luminance of 1000 cd m(-2).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available