4.8 Article

Iron Fluoride-Carbon Nanocomposite Nanofibers as Free-Standing Cathodes for High-Energy Lithium Batteries

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 32, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201801711

Keywords

FeF3; free-standing cathodes; high-energy; lithium batteries; nanofibers

Funding

  1. ARO [W911NF-17-1-0053]
  2. US Department of Energy Vehicle Technologies Program
  3. China Scholarship Council

Ask authors/readers for more resources

The development of low-cost, high-energy cathodes from nontoxic, broadly available resources is a big challenge for the next-generation rechargeable lithium or lithium-ion batteries. As a promising alternative to traditional intercalation-type chemistries, conversion-type metal fluorides offer much higher theoretical capacity and energy density than conventional cathodes. Unfortunately, these still suffer from irreversible structural degradation and rapid capacity fading upon cycling. To address these challenges, here a versatile and effective strategy is harnessed for the development of metal fluoride-carbon (C) nanocomposite nanofibers as flexible, free-standing cathodes. By taking iron trifluoride (FeF3) as a successful example, assembled FeF3-C/Li cells with a high reversible FeF3 capacity of 550 mAh g(-1) at 100 mA g(-1) (three times that of traditional cathodes, such as lithium cobalt oxide, lithium nickel cobalt aluminum oxide, and lithium nickel cobalt manganese oxide) and excellent stability (400+ cycles with little-to-no degradation) are demonstrated. The promising characteristics can be attributed to the nanoconfinement of FeF3 nanoparticles, which minimizes the segregation of Fe and LiF upon cycling, the robustness of the electrically conductive C network and the prevention of undesirable reactions between the active material and the liquid electrolyte using the composite design and electrolyte selection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available