4.7 Review

NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells

Journal

ADVANCED DRUG DELIVERY REVIEWS
Volume 125, Issue -, Pages 78-93

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.addr.2018.03.006

Keywords

Circulating tumor cells; NanoVelcro Chips; Nanostructured substrates; Microfluidics; Cell sorting; Molecular characterization

Funding

  1. National Institutes of Health [R21CA151159, R33CA157396, P01CA168585, R33 CA174562, P01CA098912, U01 CA198900, R44 CA180482, R01CA218356]

Ask authors/readers for more resources

Circulating tumor cells (CTCs) are cancer cells shredded from either a primary tumor or a metastatic site and circulate in the blood as the potential cellular origin of metastasis. By detecting and analyzing CTCs, we will be able to noninvasively monitor disease progression in individual cancer patients and obtain insightful information for assessing disease status, thus realizing the concept of tumor liquid biopsy. However, it is technically challenging to identify CTCs in patient blood samples because of the extremely low abundance of CTCs among a large number of hematologic cells. In order to address this challenge, our research team at UCLA pioneered a unique concept of NanoVelcro cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with remarkable efficiency. Four generations of NanoVelcro CTC assays have been developed over the past decade for a variety of clinical utilities. The 1st-gen NanoVelcro Chips, composed of a silicon nano wire substrate (SiNS) and an overlaid microfluidic chaotic mixer, were created for CTC enumeration. The 2nd-gen NanoVelcro Chips (i.e., NanoVelcro-LMD), based on polymer nanosubstrates, were developed for single-CTC isolation in conjunction with the use of the laser microdissection (LMD) technique. By grafting thermoresponsive polymer brushes onto SiNS, the 3rd-gen Thermoresponsive NanoVelcro Chips have demonstrated the capture and release of CTCs at 37 and 4 degrees C respectively, thereby allowing for rapid CTC purification while maintaining cell viability and molecular integrity. Fabricated with boronic acid-grafted conducting polymer-based nanomaterial on chip surface, the 4th-gen NanoVelcro Chips (Sweet chip) were able to purify CTCs with well-preserved RNA transcripts, which could be used for downstream analysis of several cancer specific RNA biomarkers. In this review article, we will summarize the development of the four generations of NanoVelcro CTC assays, and the clinical applications of each generation of devices. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available