4.6 Article

Quantum rotor theory of systems of spin-2 bosons

Journal

PHYSICAL REVIEW A
Volume 94, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.94.023605

Keywords

-

Funding

  1. European Union [PCIG-GA-2013-631002]

Ask authors/readers for more resources

We consider quantum phases of tightly confined spin-2 bosons in an external field under the presence of rotationally invariant interactions. Generalizing previous treatments, we show how this system can be mapped onto a quantum rotor model. Within the rotor framework, low-energy excitations about fragmented states, which cannot be accessed within standard Bogoliubov theory, can be obtained. In the spatially extended system in the thermodynamic limit there exists a mean field ground-state degeneracy between a family of nematic states for appropriate interaction parameters. It has been established that quantum fluctuations lift this degeneracy through the mechanism of order by disorder and select either a uniaxial or square-biaxial ground state. On the other hand, in the full quantum treatment of the analogous single-spatial-mode problem with finite-particle number, it is known that, due to symmetry-restoring fluctuations, there is a unique ground state across the entire nematic region of the phase diagram. Within the established rotor framework, we investigate the possible quantum phases under the presence of a quadratic Zeeman field, a problem which has previously received little attention. By investigating wave-function overlaps, we do not find any signatures of the order-by-disorder phenomenon which is present in the continuum case. Motivated by this, we consider an alternative external potential which breaks less symmetry than the quadratic Zeeman field. For this case, we do find the phenomenon of order by disorder in the fully quantum system. This is established within the rotor framework and with exact diagonalization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available