4.7 Article

GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

Journal

ACTA MATERIALIA
Volume 151, Issue -, Pages 191-200

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2018.03.058

Keywords

Nickel alloys; Lattice; Defects; Scanning/transmission electron microscopy (STEM); Molecular dynamics

Funding

  1. Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences
  2. Office of Science, US Department of Energy [DEAC02-05CH11231]
  3. Jane and Aatos Erkko foundation in Finland
  4. Eurofusion

Ask authors/readers for more resources

Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni50Fe50 , Ni50Co50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed in each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni50Co50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni50Fe50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni50Fe50. The significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior. (C) 2018 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available