4.7 Article

Effect of alloying elements on defect evolution in Ni-20X binary alloys

Journal

ACTA MATERIALIA
Volume 151, Issue -, Pages 159-168

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2018.03.054

Keywords

Irradiation-induced microstructural evolution; Atomic volume effect; Ni concentrated binary alloys; Defect migration

Funding

  1. Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences
  2. University of Tennessee Governor's Chair program

Ask authors/readers for more resources

The effect of alloying elements on radiation-induced microstructural evolution in Ni and Ni-20X (X = Fe, Cr, Mn and Pd) binary alloys was investigated using ion irradiation and cross-sectional transmission electron microscopy. The three-dimensional migration mode is identified to be the dominating migration mechanism for interstitial clusters in these binary alloys, contrary to the one-dimensional mode that dominates in the well-studied dilute alloys. The results reveal that: (1) the average size of defect clusters decreases as the solute atomic volume size factor increases. Smaller void size in Ni-20Cr is attributed to faster vacancy mobility in the near surface region, and weaker vacancy binding energy beyond the irradiation peak than Ni-20Fe. The smaller voids observed in Ni-20Mn and Ni-20pd beyond the damage peak are due to the stronger Mn/Pd-vacancy binding effect of largely oversized solute atoms. (2) Oversized solutes can act as strong trapping sites for interstitials. The larger the solute atomic volume factor, the stronger the trapping force. This leads to a more significantly sluggish interstitial migration and smaller dislocation loop size. The average dislocation loop size in Ni-20Fe was four times larger than Ni20Pd (atomic volume factor being 10.6% and 41.3%) but an order of magnitude lower in density. The smaller dislocation loop size in Ni-20Cr is attributed to stronger interstitial binding of Cr-Ni. Overall, the alloying effect on defects is more significant in concentrated binary alloys than in dilute binary alloys, due to the concentration difference of alloying atoms and the interstitial dominant migration mechanisms in the main irradiated region. Published by Elsevier Ltd on behalf of Acta Materialia Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available