4.5 Article

High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula)

Journal

ACTA GEOPHYSICA
Volume 66, Issue 3, Pages 381-392

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s11600-018-0138-x

Keywords

Drought; SPI; SPEI; Spain; Spatial propagation

Funding

  1. Spanish Government [CGL2014-52135-C03-01, CGL2014-52135-C3-3-R, PCIN-2015-220]
  2. FEDER
  3. Water Works 2014 of the European Commission
  4. ERA-NET Cofund for Climate Services of the European Research Area for Climate Services
  5. Regional Government of Aragon DGA-FSE (Grupo de Investigacion Consolidado 'Clima, Agua, Cambio Global y Sistemas Naturales')
  6. Ministry of the Economy and Finance
  7. predoctoral FPU program 2013 (Ministry of Education, Culture and Sport)

Ask authors/readers for more resources

The purpose of this research was to identify major drought events on the Spanish mainland between 1961 and 2014 by means of two drought indices, and analyze the spatial propagation of drought conditions. The indices applied were the standardized precipitation index (SPI) and the standardized evaporation precipitation index (SPEI). The first was calculated as standardized anomalies of precipitation at various temporal intervals, while the second examined the climatic balance normalized at monthly scale, incorporating the relationship between precipitation and the atmospheric water demand. The daily meteorological data from Spanish Meteorological Archives (AEMet) were used in performing the analyses. Within the framework of the DESEMON project, original data were converted into a high spatial resolution grid (1.1 km(2)) following exhaustive quality control. Values of both indices were calculated on a weekly scale and different timescales (12, 24 and 36 months). The results show that during the first half of the study period, the SPI usually returned a higher identification of drought areas, while the reverse was true from the 1990s, suggesting that the effect from atmospheric evaporative demand could have increased. The temporal propagation from 12- to 24-month and 36-month timescales analyzed in the paper seems to be a far from straightforward phenomenon that does not follow a simple rule of time lag, because events at different temporal scales can overlap in time and space. Spatially, the propagation of drought events affecting more than 25% of the total land indicates the existence of various spatial gradients of drought propagation, mostly east-west or west-east, but also north-south have been found. No generalized episodes were found with a radial pattern, i.e., from inland to the coast.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available