4.7 Article

COMPOSITION OF CORONAL MASS EJECTIONS

Journal

ASTROPHYSICAL JOURNAL
Volume 826, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/0004-637X/826/1/10

Keywords

acceleration of particles; solar wind; Sun: abundances; Sun: coronal mass ejections (CMEs)

Funding

  1. NASA [NNX13AH66G, NNH13ZDA001N, NNX11A075G]
  2. Catholic University of America [362496-Sub1]
  3. NASA [473206, NNX13AH66G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q(Fe) > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available