4.4 Article

Formaldehyde Adsorption Performance of Selected Metal-Organic Frameworks from High-throughput Computational Screening

Journal

ACTA CHIMICA SINICA
Volume 76, Issue 4, Pages 303-310

Publisher

SCIENCE PRESS
DOI: 10.6023/A18010026

Keywords

metal-organic frameworks; high-throughput computational screening; formaldehyde adsorption; grand canonical Monte Carlo simulations; recyclability

Funding

  1. National Natural Science Foundation of China [51606081]
  2. Basic Research Foundation of Shenzhen [JCYJ20160506170043770]

Ask authors/readers for more resources

With the rapidly increasing number of reported metal-organic frameworks (MOFs), conventional trial-and-error method is obviously not applicable to the development of high-performance MOFs for formaldehyde adsorption, due to its low efficiency, high cost and long developing period. Thus, high-throughput computational screening (HTCS) strategy based on grand canonical Monte Carlo (GCMC) simulation is proposed to quickly explore the top-performing MOFs with high adsorption capability towards formaldehyde. In this work, the computation-ready experimental (CoRE)-MOF database consisting of 2932 MOF structures carrying density derived electrostatic and chemical (DDEC) charges obtained from density function (DFT) theory calculations, were employed in high-throughput GCMC simulations for formaldehyde adsorption from the air. The structure-property relationship from HTCS revealed that the MOF candidates with high formaldehyde uptakes exhibited small pore sizes, relatively high selectivity and moderate heat of adsorption (Q(st)). Afterwards, the top MOFs with both high uptake and selectivity towards formaldehyde were chosen for further experimental evaluation. Three selected MOFs Y-BTC, ZnCar and Ni-BIC were successfully synthesized and characterized by powder X-ray diffraction (PXRD) and BET surface area analysis. In order to validate our HTCS strategy, the representative Cu-BTC and activated carbon (AC) were also adopted as controls. The formaldehyde adsorption test was performed in a sealed container with the formaldehyde concentration of 100 mg/m(3) at 298 K. After 24 h adsorption, the formaldehyde uptakes of the adsorbents were obtained according to the concentration changes prior to and after formaldehyde exposure by UV-vis spectrometer. It was found that the adsorption capacities of Y-BTC, ZnCar and Ni-BIC were 0.38, 0.25 and 0.11 mol/kg, respectively, which were remarkably higher than Cu-BTC (0.08 mol/kg) and AC (0.06 mol/kg). The recyclability of the best performer Y-BTC was also verified. These findings open up the possibility of employing HTCS strategy for highly efficient exploration of MOF adsorbents for formaldehyde removal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available