3.8 Article

Assembly of a functional 3D primary cardiac construct using magnetic levitation

Journal

AIMS BIOENGINEERING
Volume 3, Issue 3, Pages 277-288

Publisher

AMER INST MATHEMATICAL SCIENCES-AIMS
DOI: 10.3934/bioeng.2016.3.277

Keywords

cardiac; tissue engineering; heart muscle; levitation

Funding

  1. National Institute of Health (NIH) [EB011516]

Ask authors/readers for more resources

Easily assembled organotypic co-cultures have long been sought in medical research. In vitro tissue constructs with faithful representation of in vivo tissue characteristics are highly desirable for screening and characteristic assessment of a variety of tissue types. Cardiac tissue analogs are particularly sought after due to the phenotypic degradation and difficulty of culture of primary cardiac myocytes. This study utilized magnetic nanoparticles and primary cardiac myocytes in order to levitate and culture multicellular cardiac aggregates (MCAs). Cells were isolated from 2 day old Sprague Dawley rat hearts and subsequently two groups were incubated with either C-1: 33 mu L nanoshell/million cells or C-2: 50 mu L nanoshell/million cells. Varying numbers of cells for each concentration were cultured in a magnetic field in a 24 well plate and observed over a period of 12 days. Constructs generally formed spherical structures. Masson's trichrome staining of a construct shows the presence of extracellular matrix protein, indicating the presence of functional fibroblasts. Many constructs exhibited noticeable contraction after 4 days of culture and continued contracting noticeably past day 9 of culture. Noticeable contractility indicates the presence of functional primary cardiac myocytes in culture. Phenotypic conservation of cardiac cells was ascertained using IHC staining by alpha-actinin and collagen. CD31 and fibrinogen were probed in order to assess localization of fibroblasts and endothelial cells. The study verifies a protocol for the use of magnetic levitation in order to rapidly assemble 3D cardiac like tissue with phenotypic and functional stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available