4.8 Article

Aqueous Ion Trapping and Transport in Graphene-Embedded 18-Crown-6 Ether Pores

Journal

ACS NANO
Volume 12, Issue 7, Pages 6677-6684

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.8b01692

Keywords

graphene; crown ether; ion transport; ionic transistor; nanofluidics

Funding

  1. Materials Genome Initiative

Ask authors/readers for more resources

Using extensive room-temperature molecular dynamics simulations, we investigate selective aqueous cation trapping and permeation in graphene-embedded 18-crown-6 ether pores. We show that in the presence of suspended water-immersed crown-porous graphene, K+ ions rapidly organize and trap stably within the pores, in contrast with Na+ ions. As a result, significant qualitative differences in permeation between ionic species arise. The trapped ion occupancy and permeation behaviors are shown to be highly voltage-tunable. Interestingly, we demonstrate the possibility of performing conceptually straightforward ion-based logical operations resulting from controllable membrane charging by the trapped ions. addition, we show that ionic transistors based on crown-porous graphene are possible, suggesting utility in cascaded ion based logic circuitry. Our results indicate that in addition to numerous possible applications of graphene-embedded crown ether nanopores, including deionization, ion sensing/sieving, and energy storage, simple ion-based logical elements may prove promising as building blocks for reliable nanofluidic computational devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available