4.8 Article

Ionic Correlations in Random Ionomers

Journal

ACS NANO
Volume 12, Issue 3, Pages 2311-2318

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b07432

Keywords

ionomers; molecular dynamics; ionic clusters; morphology; electrostatic effects

Funding

  1. U.S. Department of Commerce, National Institute of Standards and Technology, Center for Hierarchical Materials Design (CHiMaD) [70NANB14H012]
  2. Sherman Fairchild Foundation

Ask authors/readers for more resources

Understanding the electrostatic interactions in ion-containing polymers is crucial to better design shape memory polymers and ion-conducting membranes for multiple energy storage and conversion applications. In molten polymers, the dielectric permittivity is low, generating strong ionic correlations that lead to clustering of the charges. Here, we investigate the influence of electrostatic interactions on the nanostructure of randomly charged polymers (ionomers) using coarse-grained molecular dynamics simulations. Densely packed branched structures rich in charged species are found as the strength of the electrostatic interactions increases. Polydispersity in charge fraction and composition combined with ion correlations leads to percolated nanostructures with long-range fluctuations. We identify the percolation point at which the ionic branched nanostructures percolate and offer a rigorous investigation of the statistics of the shape of the aggregates. The extra degree of freedom introduced by the charge polydispersity leads to bicontinuous structures with a broad range of compositions, similar to neutral A-B random copolymers, as well as to desirable percolated ionic structure in randomly charged-neutral diblock copolymers. These findings provide insight into the design of conducting and robust nanostructures in ion-containing polymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available