4.8 Article

An Epidermis-like Hierarchical Smart Coating with a Hardness of Tooth Enamel

Journal

ACS NANO
Volume 12, Issue 2, Pages 1062-1073

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b05478

Keywords

biomimetics; molecular assembly; hybrid structures; nanocomposites; graphene oxide; self-healing; mechanical properties

Funding

  1. National Natural Science Foundation of China [21571041]

Ask authors/readers for more resources

We overcome the fundamental dilemma in achieving hard materials with self-healing capability by integrating an epidermis-like hierarchical stratified structure with attractive mechanical and barrier properties of graphene oxide and show that such biomimetic design enables a smart hierarchical coating system with a synergetic healing effect and a record-high stiffness (31.4 +/- 1.8 GPa)/hardness (2.27 +/- 0.09 GPa) among all self-healable polymeric films even comparable to that of tooth enamel. A quasi-linear layer-by-layer (LBL) film with constituent graphene oxide is deposited on top of an exponential LBL counterpart as a protective hard layer, forming a hierarchical stratified assembly mimicking the structure of epidermis. The hybrid multilayers can achieve a complete restoration after scratching thanks to the mutual benefit: The soft underneath cushion can provide additional polymers to assist the recovery of the outer hard layer, which in turn can be a sealing barrier promoting the self-healing of the soft layer during stimulated polymer diffusion. The presenting hybridization mode of LBL assembly represents a promising tool for integrating seemingly contradictory properties in artificial materials with potential performances surpassing those in nature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available