4.8 Article

Multifluorophore DNA Origami Beacon as a Biosensing Platform

Journal

ACS NANO
Volume 12, Issue 6, Pages 5699-5708

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.8b01510

Keywords

DNA origami; DNA nanotechnology; biosensors; multifluorophore networks; energy transfer

Funding

  1. Danish Council for Independent Research [0602-01772B, 0602-01670B]

Ask authors/readers for more resources

Biosensors play increasingly important roles in many fields, from clinical diagnosis to environmental monitoring, and there is a growing need for cheap and simple analytical devices. DNA nanotechnology provides methods for the creation of sophisticated biosensors, however many of the developed DNA-based sensors are limited by cumbersome and time-consuming readouts involving advanced experimental techniques. Here we describe design, construction, and characterization of an optical DNA origami nanobiosensor device exploiting arrays of precisely positioned organic fluorophores. Two arrays of donor and acceptor fluorophores make up a multifluorophore Forster resonance energy-transfer pair that results in a high-output signal for microscopic detection of single devices. Arrangement of fluorophores into arrays increases the signal-to-noise ratio, allowing detection of signal output from singular biosensors using a conventional fluorescence microscopy setup. Single device analysis enables detection of target DNA sequences in concentrations down to 100 pM in <45 min. We expect that the presented nanobiosensor can function as a general platform for incorporating sensor modules for a variety of targets and that the strong signal amplification properties may allow detection in portable microscope systems to be used for biosensor applications in the field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available