4.8 Article

Large Hollow Cavity Luminous Nanoparticles with Near-Infrared Persistent Luminescence and Tunable Sizes for Tumor Afterglow Imaging and Chemo-/Photodynamic Therapies

Journal

ACS NANO
Volume 12, Issue 5, Pages 4246-4258

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b07606

Keywords

carbon spheres; hollow structure; drug loading; afterglow imaging; tumor therapy

Funding

  1. National Natural Science Foundation of China [81571742, 81371618]
  2. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Persistent luminous nanoparticles (PLNPs) have been capturing increasing attention in biomedical imaging because of their long-life emission and concomitant benefits (e.g., zero-autofluorescence background, high signal-to-noise ratio). Although there are quite some synthetic methodologies to synthesize PLNPs, those for constructing functional structured PLNPs remain largely unexplored. Herein we report the design principle, synthesis route, and proof-of-concept applications of hollow structured PLNPs with near-infrared (NIR) persistent luminescence, namely afterglow, and tunable sizes for tumor afterglow imaging and chemical/photodynamic therapies. The design principle leverages on the crystallization of the immobilized parent ions on the purgeable carbon spheres. This strategy provides large and size tunable hollow cavities to PLNPs after calcination. Building on the hollow cavity of PLNPs, high chemical drug (DOX) or photosensitizer (Si-Pc) loading can be achieved. The DOX/Si-Pc-loaded hollow PLNPs exhibit efficient tumor suppression based on the features of large cavity and afterglow of PLNPs. These hollow structured PLNPs, like traditional solid PLNPs, are quite stable and can be repeatedly activated, and particularly can selectively target tumor lesion, permitting rechargeable afterglow imaging in living mice. Our research supplies a strategy to synthesize hollow structured PLNPs, and hopefully it could inspire other innovative structures for cancer theranostics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available