4.6 Article

Bexarotene Binds to the Amyloid Precursor Protein Transmembrane Domain, Alters Its α-Helical Conformation, and Inhibits γ-Secretase Nonselectively in Liposomes

Journal

ACS CHEMICAL NEUROSCIENCE
Volume 9, Issue 7, Pages 1702-1713

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acschemneuro.8b00068

Keywords

H-2 NMR; order parameter; CD spectroscopy; gamma-secretase cleavage; cholesterol-protein interaction; intramembrane proteolysis

Funding

  1. DFG [FOR 2290, STE 847/6-1]
  2. US NIH [RO1AG056147, T32 CA009582]
  3. VERUM Stiftung fur Verhalten and Umwelt

Ask authors/readers for more resources

Bexarotene is a pleiotropic molecule that has been proposed as an amyloid-beta (A beta)-lowering drug for the treatment of Alzheimer's disease (AD). It acts by upregulation of an apolipoprotein E (apoE)-mediated A beta clearance mechanism. However, whether bexarotene induces removal of A beta plaques in mouse models of AD has been controversial. Here, we show by NMR and CD spectroscopy that bexarotene directly interacts with and stabilizes the transmembrane domain alpha-helix of the amyloid precursor protein (APP) in a region where cholesterol binds. This effect is not mediated by changes in membrane lipid packing, as bexarotene does not share with cholesterol the property of inducing phospholipid condensation. Bexarotene inhibited the intramembrane cleavage by gamma-secretase of the APP C-terminal fragment C99 to release A beta in cell-free assays of the reconstituted enzyme in liposomes, but not in cells, and only at very high micromolar concentrations. Surprisingly, in vitro, bexarotene also inhibited the cleavage of Notch1, another major gamma-secretase substrate, demonstrating that its inhibition of gamma-secretase is not substrate specific and not mediated by acting via the cholesterol binding site of C99. Our data suggest that bexarotene is a pleiotropic molecule that interfere with A beta metabolism through multiple mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available