4.8 Article

Scalable in Situ Synthesis of Li4Ti5O12/Carbon Nanohybrid with Supersmall Li4Ti5O12 Nanoparticles Homogeneously Embedded in Carbon Matrix

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 3, Pages 2591-2602

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b16578

Keywords

lithium-ion batteries; anode; lithium titanate; supersmall nanoparticles; photopolymerization; dental methacrylate resin

Funding

  1. National Key R&D Program of China [2016YFB0100100]
  2. Natural Science Foundation of China [51702335]
  3. Beijing National Laboratory for Molecular Science [20140138]
  4. CAS-EU S&T cooperation partner program [174433KYSB20150013]
  5. Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province
  6. International Research Training Group 2022 Alberta/Technical University of Munich International Graduate School for Environmentally Responsible Functional Hybrid Materials (ATUMS)

Ask authors/readers for more resources

Li4Ti5O12 (LTO) is regarded as a promising lithium-ion battery anode due to its stable cyclic performance and reliable operation safety. The moderate rate performance originated from the poor intrinsic electron and lithium-ion conductivities of the LTO has significantly limited its wide applications. A facile scalable synthesis of hierarchical Li4Ti5O12/C nanohybrids with supersmall LTO nanoparticles (ca. 17 nm in diameter) homogeneously embedded in the continuous submicrometer-sized carbon matrix is developed. Difunctional methacrylate monomers are used as solvent and carbon source to generate TiO2/C nanohybrid, which is in situ converted to LTO/C via a solid-state reaction procedure. The structure, morphology, crystallinity, composition, tap density, and electrochemical performance of the LTO/C nanohybrid are systematically investigated. Comparing to the control sample of the commercial LTO composited with carbon, the reversible specific capacity after 1000 cycles at 175 mA g(-1) and rate performance at high current densities (875, 1750, and 3500 mA g(-1)) of the Li4Ti5O12/C nanohybrid have been significantly improved. The enhanced electrochemical performance is due to the unique structure feature, where the supersmall LTO nanoparticles are homogeneously embedded in the continuous carbon matrix. Good tap density is also achieved with the LTO/C nanohybrid due to its hierarchical micro-/nanohybrid structure, which is even higher than that of the commercial LTO powder.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available