4.8 Article

Cu2+ Dual-Doped Layer-Tunnel Hybrid Na0.6Mn1-xCuxO2 as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 12, Pages 10147-10156

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b00614

Keywords

sodium-ion battery; cathode materials; manganese-based oxide; layer-tunnel hybrid structure; Cu2+ dual doping

Funding

  1. National Natural Science Foundation of China [21373008, 21711530143, 21506133]
  2. National Key Research and Development of China [2016YFB0100202]
  3. Science and Technology Pillar Program of Sichuan University [2014GZ0077]

Ask authors/readers for more resources

Sodium-ion batteries (SIBs) have been regarded as a promising candidate for large-scale renewable energy storage system. Layered manganese oxide cathode possesses the advantages of high energy density, low cost and natural abundance while suffering from limited cycling life and poor rate capacity. To overcome these weaknesses, layer-tunnel hybrid material was developed and served as the cathode of SIB, which integrated high capacity, superior cycle ability, and rate performance. In the current work, the doping of copper was adopted to suppress the Jahn-Teller effect of Mn3+ and to affect relevant structural parameters. Multifunctions of the Cu2+ doping were carefully investigated. It was found that the structure component ratio is varied with the Cu2+ doping amount. Results demonstrated that Na+/vacancy rearrangement and phase transitions were suppressed during cycling without sacrificing the reversible capacity and enhanced electrochemical performances evidenced with 96 mA h g(-1) retained after 250 cycles at 4 C and 85 mA h g(-1) at 8 C. Furthermore, ex situ X-ray diffraction has demonstrated high reversibility of the Na0.6Mn0.9Cu0.1O2 cathode during Na+ extraction/insertion processes and superior air stability that results in better storage properties. This study reveals that the Cu2+ doping could be an effective strategy to tune the properties and related performances of Mn-based layer-tunnel hybrid cathode.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available