4.8 Article

Three-Dimensional Hierarchical Structure ZnO@C@NiO on Carbon Cloth for Asymmetric Supercapacitor with Enhanced Cycle Stability

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 4, Pages 3549-3561

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b16021

Keywords

supercapacitor; ZnO@C@NiO; hierarchical structure; integration electrode; carbon layer; glucose

Funding

  1. National Natural Science Foundation of China [21576138, 51572127]
  2. China Israel Cooperative Program [2016YFE0129900]
  3. Natural Science Foundation of Jiangsu Province [BK20160828]
  4. Post-Doctoral Foundation [1501016B]
  5. Six Major Talent Summit [XNY-011]
  6. PAPD of Jiangsu Province
  7. program for Science and Technology Innovative Research Team in Universities of Jiangsu Province, China
  8. [NCET-12-0629]

Ask authors/readers for more resources

In this work, we synthesized: the hierarchical ZnO@C@NiO core shell nanorods arrays (CSNAs). grown on a carbon cloth (CC) conductive substrate by a three-step Method involving, hydrothermal and chemical bath methods. The morphology and chemical structure of the hybrid nanoarrays were characterized in detail. The combination and formation mechanism was proposed. The conducting carbon layer between. ZnO and NiO layers can efficiently enhance the electric conductivity of the integrated electrodes, and also protea the corrosion of ZnO in an alkaline solution. Compared with ZnO@NiO nanorods arrays (NAs), the NiO in CC/ZnO@C@NiO electrodes, which possess a unique multilevel core-shell nanostructure exhibits a higher specific capacity (677 C/g at 1.43 A/g) and an enhanced cycling stability (capacity remain 71% after 5000 cycles), on account of the protection of carbon layer derived from glucose. Additionally, a flexible all-solid-state supercapacitor is readily constructed by coating the PVA/KOH gel electrolyte between the ZnO@C@NiO CSNAs and commercial graphene. The energy density of this all-solid-state device decreases from 35.7 to 16.0 Wh/kg as the power density increases from 380.9 to 2704.2 W/kg with an excellent cycling stability (87.5% of the initial capacitance after 10000 cycles). Thereby; the CC/ZnO@C@NiO CSNAs of three-dimensional hierarchical structure is promising electrode materials for flexible all-solid-state supercapacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available