4.8 Article

Synthesizing Pickering Nanoemulsions by Vapor Condensation

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 25, Pages 21746-21754

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b06467

Keywords

Pickering nanoemulsion; vapor condensation; nanomaterials; particle adsorption; nanoparticles

Funding

  1. Branco Weiss Fellowship
  2. UIC College of Engineering

Ask authors/readers for more resources

Nanoparticle-stabilized (Pickering) emulsions are widely used in applications such as cosmetics, drug delivery, membranes, and material synthesis. However, formulating Pickering nanoemulsions remains a significant challenge. Herein, we show that Pickering nanoemulsions can be obtained in a single step even at very low nanoparticle loadings (0.2 wt %) by condensing water vapor on a nanoparticle-infused subcooled oil that spreads on water. Droplet nuclei spontaneously submerge within the oil after nucleating at the oil air interface, resulting in the suppression of droplet growth by diffusion, and subsequently coalesce to larger sizes until their growth is curtailed by nanoparticle adsorption. The average nanoemulsion size is governed by the competition between nanoparticle adsorption kinetics and droplet growth dynamics, which are in turn a function of nanoparticle size, concentration, and condensation time. Controlling such factors can lead to the formation of highly monodisperse nanoemulsions. Emulsion formation via condensation is a fast, scalable, energy-efficient process that can be adapted for a wide variety of emulsion-based applications in biology, chemistry, and materials science.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available