4.8 Article

High Aspect Ratio Carboxylated Cellulose Nanofibers Cross-linked to Robust Aerogels for Superabsorption-Flocculants: Paving Way from Nanoscale to Macroscale

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 24, Pages 20755-20766

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b04211

Keywords

cellulose nanofiber; aerogel; physical cross-linking; mechanical properties; absorption-flocculants; copper ion adsorption

Funding

  1. Key Program for International S&T Innovation Cooperation Projects of China [2016YFE0131400]
  2. 521 Talent Project of Zhejiang Sci-Tech University
  3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University [LK1713]

Ask authors/readers for more resources

Charged nanocellulose (NC) with a high aspect ratio (larger than 100) extracted from animal or bacterial cellulose and chemical cross-linked NC aerogels have great promising applicability in material science, but facile fabrication of such NC aerogels from plant cellulose by physical cross-linking still remains a major challenge. In this work, carboxylated cellulose nanofiber (CNF) with the highest aspect ratio of 144 was extracted from wasted ginger fibers by a simple onestep acid hydrolysis. Our approach could easily make the carboxylated CNF assemble into robust bulk aerogels with tunable densities and desirable shapes on a large scale (3D macropores to mesopores) by hydrogen bonds. Excitingly, these CNF aerogels had better compression mechanical properties (99.5 kPa at 80% strain) and high shape recovery. Moreover, the CNF aerogels had strong coagulation-flocculation ability (87.1%), removal efficiency of MB dye uptake (127.73 mg/g), and moderate Cu' absorption capacity (45.053 mg/g), which were due to assistance mechanisms of charge neutralization, network capture effect, and chain bridging of high aspect ratio carboxylated CNF. This provided a novel physical cross-linking method to design robust aerogels with modulated networked structures to be a general substrate material for industrial applications such as superabsorbent, flocculation, oil-water separation, and potential electrical energy storage materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available