4.8 Article

Insulated Interlayer for Efficient and Photostable Electron-Transport-Layer-Free Perovskite Solar Cells

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 12, Pages 10132-10140

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b00021

Keywords

bathocuproine; photostability; perovskite solar cell; electron-transfer-layer-free; modulation doping

Funding

  1. Global Frontier R&D Program of the Center for Multiscale Energy System [2012M3A6A7054855]
  2. Basic Science Research Program through the National Research Foundation of Korea [NRF-2014R1A4A1008474]
  3. National Research Foundation of Korea - Korea government (MSIP) [2017R1A2B3010927]
  4. Future Materials Discovery Program [NRF-2016M3D1A1027664]

Ask authors/readers for more resources

Currently, the most efficient perovskite solar cells (PSCs) mainly use planar and mesoporous titanium dioxide (TiO2) as an electron-transport layer (ETL). However, because of its intrinsic photocatalytic properties, TiO2 can decompose perovskite absorber and lead to poor stability under solar illumination (ultraviolet light). Herein, a simplified architectural ETL-free PSC with enhanced efficiency and outstanding photostability is produced by the facile deposition of a bathocuproine (BCP) interlayer. Power conversion efficiency of the ETL-free PSC improves from 15.56 to 19.07% after inserting the BCP layer, which is the highest efficiency reported for PSCs involving an ETL-free architecture, versus 19.03% for the n-i-p full device using TiO2 as an ETL. The BCP interlayer has been demonstrated to have several positive effects on the photovoltaic performances of devices, such as modulation doping of the perovskite layer, modification of FTO surface work function, and enhancing the charge-transfer efficiency between FTO and perovskite. Moreover, the BCP-based ETL-free devices exhibit outstanding photostability: the unencapsulated BCP-based ETL-free PSCs retain over 90% of their initial efficiencies after 1000 h of storage in air and maintain 92.2% after 450 h of exposure to full solar irradiation (without a UV filter), compared to only 14.1% in the n-i-p full cells under the same condition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available