4.8 Article

Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 6, Pages 5373-5384

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b13604

Keywords

Li/Na-ion battery; density functional theory; ReS2; specific capacity; adsorption and diffusion

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Hart Professorship
  3. University of Toronto

Ask authors/readers for more resources

Single-layer rhenium disulfide (ReS2) is a unique material with distinctive, anisotropic- electronic,, mechanical, and optical properties and has the potential to be used as an anode in alkali-metal-ion 'batteries. In this work, first principles calculations were performed to systematically (t. evaluate the potential of inonolayer pristine and defective ReS2 as anodes in lithium (Li)- and sodium (Na)-ion batteries. Our calculations suggest that there are severafpotential-adsorption sites for Li and Na on pristine R,62, owing to, its low-symmetry structure. Additionally, the adsorption of Li and Na over pristine ReS2 is very strong with adsorption energies of 2.28 and 1.71 eV, respectively. Interestingly, the presence of point defects causes significantly stronger binding of the alkali-metal atoms with adsorption energies in the range 2.98 to 3.17 eV for Li and 2.66 to 2.92 eV for Na. Re single vacancy was found to be the strongest binding defect for Li adsorption, whereas S single vacancy was found to be the strongest for Na. The diffusion of these two alkali atoms over pristine ReS2 is anisotropic, with an energy barrier of 0.33 eV for Li and 0.16 eV for Na. The energy barriers associated with escaping a double vacancy and single vacancy for Li atoms are significantly large at 0.60 eV for the double-vacancy case and 0.51 eV for the single-vacancy case. Similarly, for Na, they, are 0.59 and 0.47.eV, respectively, which indicates slower migration and sluggish charging/discharging. However, the diffusion energy barrier over a Re single vacancy is found to be merely 0.42 eV for a Li atom and 0.28 eV for Na. Overall, S single and double vacancies can reduce the diffusion rate by 103-103 times for Li and Na ions, respectively. These results suggest that monolayer ReS2 with a Re single vacancy adsorbs Li and Na stronger than pristine ReS2, with negligible negotiation with the charging/discharging rate of the battery, and therefore they can be used as an anode, in Li- and Na-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available