4.8 Article

Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 13, Pages 10851-10859

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b19195

Keywords

flexible supercapacitor; activated carbon fiber cloth; polymorphous supercapacitors; textile electrode; fiber-like electrode

Funding

  1. NSFC [51102139]
  2. National Key Basic Research (973) Program [2014CB932400]
  3. Shenzhen Technical Plan Projects [JC201105201100A, JCYJ20160301154114273]
  4. CERC-CVC [2016YFE0102200]

Ask authors/readers for more resources

Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, dipping and drying method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO2 are high-performance supercapacitor electrode materials. In the electrolyte of H2SO4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm(-2) (for single electrode), 157 mu W h cm(-2), and 10372 mu W cm(-2), respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 mu W h cm(-2) and a power density of 16120 mu W cm(-2). On the basis of the ACFC/PANI/CNTs/MnO2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H2SO4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available