4.8 Article

Composite Hydrogels Using Bioinspired Approach with in Situ Fast Gelation and Self-Healing Ability as Future Injectable Biomaterial

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 14, Pages 11950-11960

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b01351

Keywords

biopolymers; chitosan derivative; semisynthetic hydrogels; biodegradable; mechanical strength; injectable & self-healing gels

Funding

  1. Tampere University of Technology
  2. TEKES Finnish Funding Agency for Innovation project Human Spare Parts

Ask authors/readers for more resources

Biopolymers are attractive candidates to fabricate biocompatible hydrogels, but the low water solubility of most of them at physiological pH has hindered their applications. To prepare a water-soluble derivative of chitosan 35 (WSC) biopolymer, it was grafted with a small anionic amino acid, L-glutamic acid, using a single-step 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide coupling reaction. This resulted in a zwitterion-tethered structure onto the polymer backbone. The degree of substitution range was 13-16 +/- 1.25%, which was controlled by varying the feeding reagent ratios. Differential scanning calorimetry-and X-ray diffraction-based analysis confirmed a transition from amorphous into a moderately amorphous/crystalline morphology after amino acid grafting, which made the derivative water-soluble at physiological pH. Composite hydrogels gelated within 60 s when using this WSC together with benzaldehyde-terminated 4-arm poly(ethylene glycol) as cross-linker. The compressive modulus of these hydrogels could be easily tuned between 4.0 +/- 1.0 and 31 +/- 2.5 kPa, either by changing the cross-linker concentration or total solid content in the final gel. The gels were injectable at the lowest cross-linker as well as total solid content, due to the enhanced elastic behavior. These hydrogels showed biodegradability during a 1 month incubation period in phosphate-buffered saline with weight remaining of 60 +/- 1.5 and 44 +/- 1.45% at pHs 7.4 and 6.5, respectively. The cytocompatibility of the gels was tested using the fibroblast cell line (i.e., WI-38), which showed good cell viability on the gel surface. Therefore, these hydrogels could be an important injectable biomaterial for delivery purpose in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available