4.8 Article

Metal-Organic Framework-Derived Co3ZnC/Co Embedded in Nitrogen-Doped Carbon Nanotube-Grafted Carbon Polyhedra as a High-Performance Electrocatalyst for Water Splitting

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 7, Pages 6245-6252

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b16130

Keywords

oxygen evolution reaction; transition-metal carbides; carbon nanotube; bimetallic zeolitic imidazolate frameworks; alkaline media

Funding

  1. National Natural Science Foundation of China [51203036]
  2. Scientific Research Foundation of Beijing Institute of Technology

Ask authors/readers for more resources

The development of efficient, low-cost, and stable electrocatalysts for overall water splitting is of great significance for energy conversion. Transition-metal carbides (TMCs) with high catalytic activity and low cost have attracted great interests. Nevertheless, utilizing an efficient catalyst for overall water splitting is still a challenging issue for TMCs. Herein, we report the synthesis of a high-performance electrocatalyst comprising Co3ZnC and Co nanoparticles embedded in a nitrogen-doped carbon nanotube-grafted carbon polyhedral (Co3ZnC/Co-NCCP) by the pyrolysis of bimetallic zeolitic imidazolate frameworks in a reductive atmosphere of Ar/H-2. The Co3ZnC/Co-NCCP exhibits remarkable electrochemical activity in catalyzing both the oxygen evolution reaction and hydrogen evolution reaction, in terms of low overpotential and excellent stability. Furthermore, the Co3ZnC/Co-NCCP catalyst leads to a highly performed overall water splitting in the 1 M KOH electrolyte, delivering a current density of 10 mA cm(-2) at a low applied external potential of 1.65 V and shows good stability without obvious deactivation after 10 h operation. The present strategy opens a new avenue to the design of efficient electrocatalysts in electrochemical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available