4.0 Article

Dose-efficient ultrahigh-resolution scan mode using a photon counting detector computed tomography system

Journal

JOURNAL OF MEDICAL IMAGING
Volume 3, Issue 4, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JMI.3.4.043504

Keywords

computed tomography; spatial resolution; photon counting detector; high-resolution mode

Funding

  1. National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health [R01 EB016966, C06 RR018898]
  2. Siemens Healthcare

Ask authors/readers for more resources

An ultrahigh-resolution (UHR) data collection mode was enabled on a whole-body, research photon counting detector (PCD) computed tomography system. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the isocenter. Spatial resolution and image noise were quantitatively assessed for the UHR PCD scan mode, as well as for a commercially available UHR scan mode that uses an energy-integrating detector (EID) and a set of comb filters to decrease the effective detector size. Images of an anthropomorphic lung phantom, cadaveric swine lung, swine heart specimen, and cadaveric human temporal bone were qualitatively assessed. Nearly equivalent spatial resolution was demonstrated by the modulation transfer function measurements: 15.3 and 20.3 lp/cm spatial frequencies were achieved at 10% and 2% modulation, respectively, for the PCD system and 14.2 and 18.6 lp/cm for the EID system. Noise was 29% lower in the PCD UHR images compared to the EID UHR images, representing a potential dose savings of 50% for equivalent image noise. PCD UHR images from the anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available