4.5 Article

Cesium salts supported heteropoly acid for oxidation of methacrolein to methacrylic acid

Journal

MOLECULAR CATALYSIS
Volume 433, Issue -, Pages 153-161

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mcat.2017.01.023

Keywords

Catalysts; Polyoxometalate; Methacrolein; Selective oxidation; Methacrylic acid

Funding

  1. National Key Research and Development Program of China [2016YFB0601303]
  2. Chinese Academy of Sciences [XDA07070600]
  3. National Natural Science Funds for Distinguished Young Scholar [21425625]
  4. National Natural Science Foundation of China [21476239]

Ask authors/readers for more resources

A series of novel heteropoly catalysts (H4PMo11VO40/Cs4PMo11VO40) with core shell structure were designed and synthesized for effective oxidation of methacrolein to methacrylic acid. The effects of H4PMo11VO40 supporting amount on catalytic properties were investigated. With the hydrothermal treatment temperature increased from 25 to 180 degrees C, the surface area of Cs4PMo11VO40 decreased from 123.6 to 7.7 m(2) g(-1), while the acidity and oxidation susceptibility of Cs4PMo11VO40 were enhanced due to its re-crystallization. The XRD results showed that the crystalline form of H4PMo11VO40 changed from triclinic to cubic form because of the guidance effect of Cs4PMo11VO40. BET, NH3-TPD and XPS results indicated that compared with bulk H4PMo11VO40, surface area and oxidation susceptibility of the supported one increased significantly, and the acidity decreased. The sui thickness of H4PMo11VO40 layer on Cs4PMo11VO40 was a key point to tune the surface area, oxidation susceptibility and acidity of catalysts. At 310 degrees C, the methacrolein conversion and methacrylic acid selectivity on the optimum supported catalyst were more than 85% and 75%, respectively, which were much better than those on bulk H4PMo11VO40 (39% and 46%), Cs4PMo11VO40 (15.6% and 0%) and Cs2.6H1.4PMo11VO40 (99.9% and 36.5%). (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available