4.6 Article

Potential of SPR Sensors Based on Multilayer Interfaces With Gold and LHM for Biosensing Applications

Journal

PHOTONIC SENSORS
Volume 7, Issue 3, Pages 199-205

Publisher

SPRINGEROPEN
DOI: 10.1007/s13320-017-0425-1

Keywords

Plasmonic; goos-Hanchen (GH) effect; SPR sensor systems; sub-wavelength scale

Ask authors/readers for more resources

Recently, the subject on plasmonics'' has received significant attention in designing surface plasmon resonance (SPR) sensors. In order to achieve extremely high-sensitivity sensing, multilayered configurations based on a variety of active materials and dielectrics have been exploited. In this work, a novel SPR sensor is proposed and investigated theoretically. The structure, analyzed in attenuated total reflection (ATR), consists of multilayer interfaces between gold and a metamaterial (LHM) separated by an analyte layer as a sensing medium. By interchanging between gold and LHM, under the effect of the refractive index (RI) of analyte set to be in the range of 1.00 to 1.99, the sharp peak reflectivity at the SPR angle takes two opposite behaviors predicted from the transfer matrix method. At the threshold value of 1.568 of the refractive index of analyte and when the LHM is the outer medium, the layered structure exhibits a giant sharp peak located at 43 degrees of intensity up to 10(5) due to the Goos-Hanchen effect. With respect to the refractive index (RI) change and thickness of analyte, the characteristics (intensity, resonance condition, and quality factor) of the SPR mode, which make the proposed device have the potential for biosensing applications, have been analytically modelized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available